563 research outputs found

    Integrated approach for coastal hazards and risks in Sri Lanka

    Get PDF
    The devastating impact of the tsunami of 26 December 2004 on the shores of the Indian Ocean recalled the importance of knowledge and the taking into account of coastal hazards. Sri Lanka was one of the countries most affected by this tsunami (e.g. 30 000 dead, 1 million people homeless and 70% of the fishing fleet destroyed). Following this tsunami, as part of the French post-tsunami aid, a project to establish a Geographical Information System (GIS) on coastal hazards and risks was funded. This project aims to define, at a pilot site, a methodology for multiple coastal hazards assessment that might be useful for the post-tsunami reconstruction and for development planning. This methodology could be applied to the whole coastline of Sri Lanka. <br><br> The multi-hazard approach deals with very different coastal processes in terms of dynamics as well as in terms of return period. The first elements of this study are presented here. We used a set of tools integrating a GIS, numerical simulations and risk scenario modelling. While this action occurred in response to the crisis caused by the tsunami, it was decided to integrate other coastal hazards into the study. Although less dramatic than the tsunami these remain responsible for loss of life and damage. Furthermore, the establishment of such a system could not ignore the longer-term effects of climate change on coastal hazards in Sri Lanka. <br><br> This GIS integrates the physical and demographic data available in Sri Lanka that is useful for assessing the coastal hazards and risks. In addition, these data have been used in numerical modelling of the waves generated during periods of monsoon as well as for the December 2004 tsunami. Risk scenarios have also been assessed for test areas and validated by field data acquired during the project. The results obtained from the models can be further integrated into the GIS and contribute to its enrichment and to help in better assessment and mitigation of these risks. <br><br> The coastal-hazards-and-risks GIS coupled with modelling thus appears to be a very useful tool that can constitute the skeleton of a coastal zone management system. Decision makers will be able to make informed choices with regards to hazards during reconstruction and urban planning projects

    Early anthropogenic impact on Western Central African rainforests 2,600 y ago

    Get PDF
    A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest–savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the ‘‘rainforest crisis’’ to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. δ¹³C-inferred vegetation changes confirm a prominent and abrupt appearance of C4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. δD values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era

    Neodymium isotope constraints on provenance, dispersal, and climate-driven supply of Zambezi sediments along the Mozambique Margin during the past ∼45,000 years

    Get PDF
    Marine sediments deposited off the Zambezi River that drains a considerable part of the southeast African continent provide continuous records of the continental climatic and environmental conditions. Here we present time series of neodymium (Nd) isotope signatures of the detrital sediment fraction during the past ~45,000 years, to reconstruct climate-driven changes in the provenance of clays deposited along the Mozambique Margin. Coherent with the surface current regime, the Nd isotope distribution in surface sediments reveals mixing of the alongshore flowing Zambezi suspension load with sediments supplied by smaller rivers located further north. To reconstruct past changes in sediment provenances, Nd isotope signatures of clays that are not significantly fractionated during weathering processes have been obtained from core 64PE304-80, which was recovered just north of the Zambezi mouth at 1329 m water depth. Distinctly unradiogenic clay signatures (ENd values <214.2) are found during the Last Glacial Maximum, Heinrich Stadial 1, and Younger Dryas. In contrast, the Nd isotope record shows higher, more radiogenic isotope signatures during Marine Isotope Stage 3 and between ~15 and ~5 ka BP, the latter coinciding with the timing of the northern hemisphere African Humid Period. The clay-sized sediment fraction with the least radiogenic Nd isotope signatures was deposited during the Holocene, when the adjacent Mozambique Shelf became completely flooded. In general, the contribution of the distinctly unradiogenic Zambezi suspension load has followed the intensity of precession-forced monsoonal precipitation and enhanced during periods of increased southern hemisphere insolation and high-latitude northern hemispheric climate variability

    Electrocatalytic hydrogen evolution by an iron complex containing a nitro-functionalized polypyridyl ligand

    Get PDF
    Iron polypyridyl complexes have recently been reported to electrocatalytically reduce protons to hydrogen gas at -1.57 V versus Fc(+)/Fc. A new iron catalyst with a nitro-functionalized polypyridyl ligand has been synthesized and found to be active for proton reduction. Interestingly, catalysis occurs at -1.18 V versus Fc(+)/Fc for the nitro-functionalized complex, resulting in an overpotential of 300 mV. Additionally, the complex is active with a turnover frequency of 550 s(-1). Catalysis is also observed in the presence of water with a 12% enhancement in activity. (C) 2015 Elsevier Ltd. All rights reserved

    The metabolic syndrome is not associated with homocysteinemia: The Persian Gulf Healthy Heart Study

    Get PDF
    Background: It is uncertain whether homocysteine and the metabolic syndrome or its components are related in the general population, as studies investigating the association between homocysteine levels and insulin resistance have shown conflicting results. Methods: In an ancillary study to the Persian Gulf Healthy Heart Study, a cohort study of Iranian men and women aged ≥25 yr, a random sample of 1754 subjects were evaluated for the association of plasma homocysteine levels and the metabolic syndrome using National Cholesterol Education Program (NCEP)-Adult Treatment Panel (ATP)-III criteria. Total homocysteine levels and high sensitivity C-reactive protein (CRP) were determined by enzyme-linked immunosorbent assays. Results: Subjects with lower HDL-cholesterol and higher blood pressure showed significantly higher homocysteine levels (p=0.001 and p<0.0001; respectively). There was no significant difference in serum levels of homocysteine between subjects with and without the metabolic syndrome. In multiple logistic regression analysis, the metabolic syndrome did not show a significant association with serum homocysteine levels after adjusting for sex, age, smoking, fruit and vegetable intake pattern, body mass index, and physical inactivity. Concurrent elevated CRP levels and the metabolic syndrome also did not show a significant association with serum homocysteine levels after adjusting for sex, age, and lifestyle cardiovascular risk factors. Conclusions: There was no association between the metabolic syndrome using NCEP-ATPIII criteria and homocysteinemia in this study. These data refute the hypothesis that homocysteine levels are influenced by the metabolic syndrome, at least in general healthy population

    Identification of potentially cytotoxic lesions induced by UVA photoactivation of DNA 4-thiothymidine in human cells

    Get PDF
    Photochemotherapy—in which a photosensitizing drug is combined with ultraviolet or visible radiation—has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S4TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation. Here, we demonstrate that UVA photoactivation of DNA S4TdR does not generate reactive oxygen or cause direct DNA breakage and is only minimally mutagenic. In an organotypic human skin model, UVA penetration is sufficiently robust to kill S4TdR-photosensitized epidermal cells. We have investigated the DNA lesions responsible for toxicity. Although thymidine is the predominant UVA photoproduct of S4TdR in dilute solution, more complex lesions are formed when S4TdR-containing oligonucleotides are irradiated. One of these, a thietane/S5-(6-4)T:T, is structurally related to the (6-4) pyrimidine:pyrimidone [(6-4) Py:Py] photoproducts induced by UVB/C radiation. These lesions are detectable in DNA from S4TdR/UVA-treated cells and are excised from DNA more efficiently by keratinocytes than by leukaemia cells. UVA irradiation also induces DNA interstrand crosslinking of S4TdR-containing duplex oligonucleotides. Cells defective in repairing (6-4) Py:Py DNA adducts or processing DNA crosslinks are extremely sensitive to S4TdR/UVA indicating that these lesions contribute significantly to S4TdR/UVA cytotoxicity

    Simulating carbon accumulation and loss in the central Congo peatlands

    Get PDF
    Peatlands of the central Congo Basin have accumulated carbon over millennia. They currently store some 29 billion tonnes of carbon in peat. However, our understanding of the controls on peat carbon accumulation and loss and the vulnerability of this stored carbon to climate change is in its infancy. Here we present a new model of tropical peatland development, DigiBog_Congo, that we use to simulate peat carbon accumulation and loss in a rain-fed interfluvial peatland that began forming ~20,000 calendar years Before Present (cal. yr BP, where ‘present’ is 1950 CE). Overall, the simulated age-depth curve is in good agreement with palaeoenvironmental reconstructions derived from a peat core at the same location as our model simulation. We find two key controls on long-term peat accumulation: water at the peat surface (surface wetness) and the very slow anoxic decay of recalcitrant material. Our main simulation shows that between the Late Glacial and early Holocene there were several multidecadal periods where net peat and carbon gain alternated with net loss. Later, a climatic dry phase beginning ~5200 cal. yr BP caused the peatland to become a long-term carbon source from ~3975 to 900 cal. yr BP. Peat as old as ~7000 cal. yr BP was decomposed before the peatland's surface became wetter again, suggesting that changes in rainfall alone were sufficient to cause a catastrophic loss of peat carbon lasting thousands of years. During this time, 6.4 m of the column of peat was lost, resulting in 57% of the simulated carbon stock being released. Our study provides an approach to understanding the future impact of climate change and potential land-use change on this vulnerable store of carbon

    Hepatitis C Virus Controls Interferon Production through PKR Activation

    Get PDF
    Hepatitis C virus is a poor inducer of interferon (IFN), although its structured viral RNA can bind the RNA helicase RIG-I, and activate the IFN-induction pathway. Low IFN induction has been attributed to HCV NS3/4A protease-mediated cleavage of the mitochondria-adapter MAVS. Here, we have investigated the early events of IFN induction upon HCV infection, using the cell-cultured HCV JFH1 strain and the new HCV-permissive hepatoma-derived Huh7.25.CD81 cell subclone. These cells depend on ectopic expression of the RIG-I ubiquitinating enzyme TRIM25 to induce IFN through the RIG-I/MAVS pathway. We observed induction of IFN during the first 12 hrs of HCV infection, after which a decline occurred which was more abrupt at the protein than at the RNA level, revealing a novel HCV-mediated control of IFN induction at the level of translation. The cellular protein kinase PKR is an important regulator of translation, through the phosphorylation of its substrate the eIF2α initiation factor. A comparison of the expression of luciferase placed under the control of an eIF2α-dependent (IRESEMCV) or independent (IRESHCV) RNA showed a specific HCV-mediated inhibition of eIF2α-dependent translation. We demonstrated that HCV infection triggers the phosphorylation of both PKR and eIF2α at 12 and 15 hrs post-infection. PKR silencing, as well as treatment with PKR pharmacological inhibitors, restored IFN induction in JFH1-infected cells, at least until 18 hrs post-infection, at which time a decrease in IFN expression could be attributed to NS3/4A-mediated MAVS cleavage. Importantly, both PKR silencing and PKR inhibitors led to inhibition of HCV yields in cells that express functional RIG-I/MAVS. In conclusion, here we provide the first evidence that HCV uses PKR to restrain its ability to induce IFN through the RIG-I/MAVS pathway. This opens up new possibilities to assay PKR chemical inhibitors for their potential to boost innate immunity in HCV infection
    corecore